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Model Checking for Programming Languages using VeriSoftPatrice GodefroidBell LaboratoriesLucent Technologies1000 E. Warrenville RoadNaperville, IL 60566, U.S.A.god@bell-labs.comhttp://www.bell-labs.com/people/godAbstractVeri�cation by state-space exploration, also often re-ferred to as \model checking", is an e�ective methodfor analyzing the correctness of concurrent reactive sys-tems (e.g., communication protocols). Unfortunately,existing model-checking techniques are restricted to theveri�cation of properties of models, i.e., abstractions, ofconcurrent systems.In this paper, we discuss how model checking can beextended to deal directly with \actual" descriptions ofconcurrent systems, e.g., implementations of communi-cation protocols written in programming languages suchas C or C++. We then introduce a new search tech-nique that is suitable for exploring the state spaces ofsuch systems. This algorithm has been implemented inVeriSoft, a tool for systematically exploring the statespaces of systems composed of several concurrent pro-cesses executing arbitrary C code. As an example ofapplication, we describe how VeriSoft successfully dis-covered an error in a 2500-line C program controllingrobots operating in an unpredictable environment.1 IntroductionConcurrent systems are systems composed of elementsthat can operate concurrently and communicate witheach other. Each component can be viewed as a reac-tive system, i.e., a system that continuously interactswith its environment. Concurrent reactive systems arenotably hard to design because their components mayinteract in many unexpected ways. Traditional test-ing techniques are of limited help since test coverage

is bound to be only a minute fraction of the possiblebehaviors of the system.State-space exploration is one of the most successfulstrategies for analyzing the correctness of concurrent re-active systems. It consists of exploring a directed graph,called the state space, representing the combined behav-ior of all concurrent components in a system. Such astate space can be computed automatically from a de-scription of the concurrent system speci�ed in a model-ing language. Many properties of a model of a systemcan be checked by exploring its state space: deadlocks,dead code, violations of user-speci�ed assertions, etc.Moreover, the range of properties that state-space ex-ploration techniques can verify has been substantiallybroadened during the last decade thanks to the develop-ment of model-checking methods for various temporallogics (e.g., [CES86, LP85, QS81, VW86]). In what fol-lows, we will use the term \model checking" in a broadsense, to denote any automatic state-space explorationtechnique that can be used for veri�cation purposes.1Examples of tools that follow the above paradigm areCAESAR [FGM+92], COSPAN [HK90], CWB [CPS93],MURPHI [DDHY92], SMV [McM93], SPIN [Hol91], andVFSMvalid [FHS95], among others. These tools di�erby the modeling languages they use for representing sys-tems and properties, and by the conformation criteriaaccording to which these representations are compared.But all of them are based on state-space explorationalgorithms, in one form or another, for performing theveri�cation itself.The e�ectiveness of model checking for debuggingconcurrent reactive systems is becoming increasinglywell-established. Several very complex concurrent sys-tems have been modeled, and then analyzed using state-1Note that the term \model checking" is not due to the fact thatthe correctness of a model, i.e., an abstraction, of a system is checked,but rather refers to the fact that model checking checks whether allthe computations of a system are \models", in the classical logicalsense, of a temporal logic formula.
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space exploration techniques. In many cases, these tech-niques were able to reveal quite subtle design errors(e.g., [Rud92, CGH+93, BG96]).It is worth emphasizing that the practical interest ofthese state-space exploration techniques (and of \veri-�cation" in general) is mainly to �nd errors that wouldbe hard to detect and reproduce otherwise, and notnecessarily to prove the absence of errors. While math-ematically proving that a model of a system conformsto a speci�c set of properties does increase the con�-dence that the actual system is \correct", it does notprovide a proof of this fact.In this paper, we discuss how model checking can beextended to deal directly with \actual" descriptions ofconcurrent systems, e.g., implementations of communi-cation protocols written in programming languages suchas C or C++. We show that existing search techniquesfor state-space exploration are fundamentally limitedto the analysis of systems for which each state of thesystem can be readily represented by a unique identi-�er. We then introduce an e�cient search techniquethat does not rely on this assumption. This search al-gorithm can therefore be applied to systems composedof several concurrent processes executing arbitrary codewritten in full-
edged programming languages.2 Concurrent Systems and DynamicSemanticsWe consider a concurrent system composed of a �niteset P of processes and a �nite set O of communicationobjects. Each process P 2 P executes a sequence ofoperations, that is described in a sequential programwritten in a full-
edged programming language such asC or C++. Such programs are deterministic: every ex-ecution of the program on the same data performs thesame sequence of operations. We assume that processescommunicate with each other by performing operationson communication objects. A communication objectO 2 O is de�ned by a pair (V;OP ), where V is theset of all possible values for the object (its domain),and OP is the set of operations that can be performedon the object. Examples of communication objects areshared variables, semaphores, and FIFO bu�ers. Atany time, at most one operation can be performed on agiven communication object (operations on a same com-munication object are mutually exclusive). Operationson communication objects are called visible operations,while other operations are by default called invisible.The execution of an operation is said to be blocking if itcannot be completed. We assume that only executionsof visible operations may be blocking.At any time, the concurrent system is said to be in

a state. The system is said to be in a global state whenthe next operation to be executed by every process inthe system is a visible operation. Initially, after thecreation of all the processes of the system, we assumethat all the processes eventually executes a visible oper-ation, and hence that the system may reach a �rst andunique global state s0, called the initial global state ofthe system. We de�ne a process transition, or transitionfor short, as one visible operation followed by a �nitesequence of invisible operations performed by a singleprocess. Let T denote the set of all transitions of thesystem.A transition is said to be disabled in a global states when the execution of its visible operation is block-ing in s. Otherwise, the transition is said to be enabledin s. A transition t that is enabled in a global state scan be executed from s. Since the number of invisibleoperations in a transition is �nite, the execution of anenabled transition always terminates. When the exe-cution of t from s is completed, the system reaches aglobal state s0, called the successor of s by t.2 We writes t! s0 to mean that the execution of the transition tleads from the global state s to the global state s0, whiles w) s0 means that the execution of the �nite sequencew of transitions leads from s to s0. If s w) s0, s0 is saidto be reachable from s.We now de�ne a formal semantics for the concurrentsystems that satisfy our assumptions. A concurrent sys-tem as de�ned here is a closed system: from its initialglobal state, it can evolve and change its state by ex-ecuting enabled transitions. Therefore, a very naturalway to describe the possible behaviors of such a systemis to consider its set of reachable global states and thetransitions that are possible between these.Formally, the joint global behavior of all processes Piin a concurrent system can be represented by a transi-tion system AG = (S;�; s0) such that� S is the set of global states of the system,� � � S � S is the transition relation de�ned asfollows: (s; s0) 2 � i� 9t 2 T : s t! s0;� s0 is the initial global state of the system.An element of � corresponds to the execution of a singletransition t 2 T of the system. The elements of �will be referred to as global transitions. It is naturalto restrict AG to its global states and transitions thatare reachable from s0, since the other global states and2Operations on objects (and hence transitions) are deterministic:the execution of a transition t in a state s leads to a unique successorstate.



www.manaraa.com

s0

P1:semwait

P2:semwait

P2:semwait

P1:semwait

P1:semwait P1:semsignal P1:semsignal P2:semwait P2:semwait P2:semsignal

P2:semsignal

P2:semwait P2:semsignal P2:semsignal P1:semwait P1:semwait P1:semsignal

P1:semsignal

deadlock deadlock

Figure 1: Global state space for the two-dining-philosophers systemtransitions play no role in the behavior of the system.In what follows, a \state in AG" denotes a state thatis reachable from s0. By de�nition, states in AG areglobal. AG is called the global state space of the system.Example 1 Consider the following concurrent C pro-gram./* phil.c : dining philosophers (version without loops) */#include <stdio.h>#include <sys/types.h>#include <sys/ipc.h>#include <sys/sem.h>#define N 2philosopher(i)int i;{ printf("philosopher %d thinks\n",i);semwait(i); /* take left fork */semwait((i+1)%N); /* take right fork */printf("philosopher %d eats\n",i);semsignal(i); /* release left fork */semsignal((i+1)%N); /* release right fork */exit(0);}main(){ int semid, i, pid;semid = semget(IPC_PRIVATE,N,0600);for(i=0;i<N;i++)semsetval(i,1);for(i=0;i<(N-1);i++) {if((pid=fork()) == 0)philosopher(i);};philosopher(i);}

This program represents a concurrent system com-posed of two processes. It describes the behavior ofthese processes as well as the initialization of the sys-tem. This example is inspired by the well-known dining-philosophers problem, with two philosophers. The twoprocesses communicate by executing the (visible) oper-ations semwait and semsignal on two semaphores thatare identi�ed by the integers 0 and 1 respectively. Thevalue of both semaphores is initialized to 1 (with the op-eration semsetval). By implementing these operationsusing actual UNIX semaphores, the program above canbe compiled and run on any UNIX machine. The statespace AG of this system is shown in Figure 1, whereglobal transitions are labeled with the visible opera-tion of the corresponding process transition. The op-eration exit is a visible operation whose execution is al-ways blocking. Since all the processes are deterministic,nondeterminism in AG is caused only by concurrency.Since we consider here closed concurrent systems,the environment of one process is formed by the otherprocesses in the system. This implies that, in the caseof a single \open" reactive system, the environment inwhich this system operates has to be represented, possi-bly using other processes. In practice, a complete rep-resentation of such an environment may not be avail-able, or may be very complex. It is then convenient touse a model, i.e., a simpli�ed representation, of the en-vironment to simulate its external behavior. For thispurpose, we introduce a special operation \VS toss"to express a valuable feature of modeling languages,not found in programming languages: nondeterminism.This operation takes as argument a positive integer n,and returns an integer in [0; n]. The operation is visi-ble and nondeterministic: the execution of a transitionstarting with VS toss(n) may yield up to n + 1 di�er-ent successor states, corresponding to di�erent values
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returned by VS toss.Which properties of a concurrent system is it possi-ble to check by examining its state space AG as de�nedabove? Here, we focus mainly on two veri�cation prob-lems (other properties will be discussed later in Sec-tion 5): the detection of deadlocks, i.e., states wherethe execution of the next operation of every process inthe system is blocking, and the detection of violationsof assertions speci�ed by the user with the special op-eration \VS assert". This operation can be insertedin the code of any process, and is considered visible. Ittakes as its argument a boolean expression that can testand compare the value of variables and data structureslocal to the process. When \VS assert(expression)" isexecuted, the expression is evaluated. If the expressionevaluates to false, the assertion is said to be violated.The following theorem states that deadlocks and as-sertion violations can be detected by exploring only theglobal states of a concurrent system.Theorem 1 Consider a concurrent system as de�nedabove, and let AG denote its state space. Then, all thedeadlocks that are reachable after the initialization ofthe system are global states, and are therefore in AG.Moreover, if there exists a state reachable after the ini-tialization of the system where an assertion is violated,then there exists a global state in AG where the sameassertion is violated.Proof: See Appendix.This theorem justi�es our choice for the \dynamic" se-mantics described in this section.In the next section, we discuss how to build a rep-resentation of the state space of a concurrent systemas de�ned above. We brie
y review standard state-space exploration techniques, and show why they arenot appropriate for exploring state spaces of concurrentsystems whose processes are described by arbitrary pro-grams.3 Existing State-Space Exploration Tech-niquesIn the case of models of concurrent systems, a statespace AG is usually computed by performing a searchof all the states that are reachable from the initial states0 of the system. An algorithm for performing such asearch is shown in Figure 2. This algorithm recursivelyexplores all successor states of all states encounteredduring the search, starting from the initial state, byexecuting all enabled transitions in each state (lines 7{8). The main data structures used are a Set to store thestates whose successors still have to be explored, and ahash table H to store all the states that have already

1 Initialize:Set is empty; H is empty;2 add s0 to Set;3 Loop: while Set 6= ; do f4 take s out of Set;5 if s is NOT already in H then f6 enter s in H;7 T = enabled(s);8 for all t in T do f9 s0 = succ(s) after t;10 add s0 to Set;11 g12 g13 gFigure 2: Algorithm 1 { classical searchbeen visited during the search. The set of all transitionsenabled in a state s is denoted by enabled(s). The statereached from a state s after the execution of a transitiont is denoted \succ(s) after t". It is easy to prove that, ifAG is �nite, all the states of AG are visited during thesearch performed by the algorithm of Figure 2 [AHU74].The order in which the search is performed (e.g., depth-�rst, breadth-�rst, : : : ) depends on how the operations\add" and \take" are implemented.It is important to note that the algorithm of Fig-ure 2 assumes that each state s can be represented by aunique identi�er, that can be stored in the data struc-tures Set and H during the search. Although othersearch algorithms for modeling languages , such as sym-bolic veri�cation methods [BCM+90, CGL92, McM93],may use other types of data structures (e.g., Binary De-cision Diagrams [Bry92]) for representing state spaces,they all rely on the assumption that each state of thesystem has a unique and manageable representation.When dealing with processes described by arbitraryprograms written in full-
edged programming languages,this assumption is not valid anymore. Indeed, the stateof each process is determined by the values of all thememory locations that can be accessed by the processand in
uence its behavior (including activation recordsassociated to procedure calls). This information is typ-ically far too large and complex to be e�ciently andunambiguously encoded by a string of bits, which couldthen be saved in memory at each step of the state-spaceexploration.However, nothing prevents us from systematicallysearching the state space of a concurrent system withoutstoring any intermediate states in memory. Let us callsuch a search a state-less search. Of course, if the statespace AG contains cycles, a state-less search throughit will not terminate, even if AG is �nite. Even state-less searches of \small" �nite acyclic state spaces (e.g.,
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composed of only a few thousand states) may not termi-nate in a reasonable amount of time. To illustrate thisphenomenon, let us consider the dining-philosophers ex-ample again. (The state space of this system does notcontain any cycles.) The number of transitions exploredby a classical search (Algorithm 1) and by a state-lesssearch are compared in Figure 4, for various numbersN of philosophers. The run-time of both algorithmsis proportional to the number of explored transitions.One clearly sees that the state-less search is much slowerthan the classical one. In the case of four philosophers,the state-less search explores 386816 transitions, whilethey are only 708 transitions in AG. While every tran-sition of AG is executed exactly once during a classicalsearch, every transition of AG is executed on averageabout 546 times during a state-less search! This tremen-dous di�erence is due to the numerous re-explorationsof unstored parts of the state space during the state-lesssearch.4 An E�cient State-Less Search AlgorithmThe state-less search technique can be viewed as a par-ticular case of state-space caching [Hol85, JJ91, GHP95],a memory management technique for storing the statesencountered during a classical search performed in depth-�rst order. State-space caching consists of storing allthe states of the current explored path plus as manyother states as possible given the remaining amount ofavailable memory. It thus creates a restricted cacheof selected states that have already been visited. Thismethod never tries to store more states than possiblein the cache. A state-less search corresponds to the ex-treme case where the cache does not contain any stateat all.State-space caching su�ers the same drawback asthe state-less search: multiple redundant explorationsof large unstored parts of the state space yield an un-acceptable blow-up of the run-time. Indeed, almost allstates in the state space of concurrent systems are typ-ically reached several times during the search. Thereare two causes for this:1. From the initial state, the exploration of any inter-leaving of a single �nite partial ordering of transi-tions of the system always leads to the same state.This state will thus be visited several times be-cause of all these interleavings.2. From the initial state, explorations of di�erent �-nite partial orderings of transitions may lead tothe same state.In [GHP95], it is shown that most of the e�ects ofthe �rst cause given above can be avoided when us-

ing a search algorithm based on the notion of sleepsets [God90, GW93]. Such an algorithm dynamicallyprunes the state space of a concurrent system withoutincurring the risk of any incompleteness in the veri�-cation results. Empirical results [GHP95, God96] showthat, in many cases, most of the states are visited onlyonce during a state-space exploration performed withthis search technique. This makes it possible not tostore most of the states previously visited during thesearch without incurring much redundant explorationof parts of the state space.Sleep sets belong to a broader family of algorithms,referred to as partial-order methods [God96], that weredeveloped to tackle the \state explosion" phenomenonthat limits the e�ciency and applicability of veri�cationby state-space exploration. In [God96], it is shown thatsleep sets can be combined with another pruning tech-nique based on the notion of persistent sets. Using bothtechniques simultaneously preserves the bene�cial prop-erties of sleep sets outlined in the previous paragraphwhile substantially reducing the number of states andtransitions that have to be visited.In this section, we present a new state-space explo-ration algorithm that combines a state-less search withthe persistent-set and sleep-set techniques. Before turn-ing to the presentation of this algorithm, we brie
y re-call some basic principles of partial-order methods.The basic idea behind partial-order methods that en-ables them to check properties of AG without construct-ing the whole of AG is the following: AG contains manypaths that correspond simply to di�erent execution or-ders of the same process transitions. If these transitionsare \independent", for instance because they are exe-cuted by noninteracting processes, then changing theirorder will not modify their combined e�ect.This notion of independency between transitions andits complementary notion, the notion of dependency,can be formalized by the following de�nition (adaptedfrom [KP92]).De�nition 1 Let T be the set of system transitionsand D � T � T be a binary, re
exive, and symmetricrelation. The relation D is a valid dependency relationfor the system i� for all t1; t2 2 T , (t1; t2) 62 D (t1and t2 are independent) implies that the two followingproperties hold for all global states s in the global statespace AG of the system:1. if t1 is enabled in s and s t1! s0, then t2 is enabledin s i� t2 is enabled in s0 (independent transitionscan neither disable nor enable each other); and2. if t1 and t2 are enabled in s, then there is a uniquestate s0 such that s t1t2) s0 and s t2t1) s0 (commuta-tivity of enabled independent transitions).
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This de�nition characterizes the properties of possible\valid" dependency relations for the transitions of agiven system. In practice, it is possible to give eas-ily checkable syntactic conditions that are su�cient fortransitions to be independent. In a concurrent sys-tem as de�ned in Section 2, dependency can arise be-tween transitions of di�erent processes that refer to thesame communication objects. For instance, two waitoperations on a binary semaphore are dependent whenthey are enabled, while two signal operations on thesame non-binary semaphore are independent. Carefullytracking dependencies between operations on communi-cation objects is by no means a trivial task. We referthe reader to [God96] for a detailed presentation of thattopic.All partial-order algorithms follow the same basicpattern: they operate as classical state-space searchesexcept that, at each state s reached during the search,they compute a subset T of the set of transitions en-abled at s, and explore only the transitions in T , theother enabled transitions are not explored. Such a searchis called a selective search. It is easy to see that a se-lective search through AG only reaches a subset (notnecessarily proper) of the states and transitions of AG.Two main techniques for computing such sets T havebeen proposed in the literature: the persistent-set andsleep-set techniques. The �rst technique actually corre-sponds to a whole family of algorithms [Ove81, Val91,GP93, GW93, Pel93]. In [God96], it is shown that allthese algorithms compute \persistent sets". Intuitively,a subset T of the set of transitions enabled in a state s ofAG is called persistent in s if all transitions not in T thatare enabled in s, or in a state reachable from s throughtransitions not in T , are independent with all transi-tions in T . In other words, whatever one does from s,while remaining outside of T , does not interact with ora�ect T . Formally, we have the following [GP93].De�nition 2 A set T of transitions enabled in a states is persistent in s i�, for all nonempty sequences oftransitionss = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1from s in AG and including only transitions ti 62 T ,1 � i � n, tn is independent with all transitions in T .Note that the set of all enabled transitions in a state sis trivially persistent since nothing is reachable from sby transitions that are not in this set. It is beyond thescope of this paper to present algorithms for computingpersistent sets. In a nutshell, these algorithms infer thepersistent sets from the static structure of the system

1 Initialize: Stack is empty;2 Search() f3 DFS(;);4 g5 DFS(set: Sleep) f6 T = Persistent Set()nSleep;7 while T 6= ; do f8 take t out of T ;9 push (t) onto Stack;10 Execute(t);11 DFS(ft0 2 Sleep j t0 and t are independentg);12 pop t from Stack;13 Undo(t);14 Sleep = Sleep [ ftg;15 g;16 gFigure 3: Algorithm 2 { state-less depth-�rst searchusing persistent sets and sleep setsbeing veri�ed. They di�er by the type of informationabout the system that they use. The aim of these al-gorithms is to obtain the smallest possible nonemptypersistent sets. See [God96] for several such algorithmsand a comparison of their complexity.The second technique for computing the set of tran-sitions T to consider in a selective search is the sleepset technique [God90, GW93]. This technique does notexploit information about the static structure of the sys-tem, but rather about the past of the search. Used inconjunction with a persistent set algorithm, sleep setscan further reduce the number of explored states andtransitions.An algorithm that combines persistent sets and sleepsets with a state-less search is shown in Figure 3. Thisalgorithm performs a selective depth-�rst search (DFS)in the state space of a concurrent system. The datastructure Stack contains the sequence of transitions thatleads from the initial global state s0 to the currentglobal state being explored. A set denoted by Sleepis associated with each global state reached during thesearch, i.e., with each call to the procedure DFS. Thesleep set associated with a global state s is a set of tran-sitions that are enabled in s but will not be exploredfrom s. The sleep set associated with the initial globalstate s0 is the empty set. Each time a new global states is encountered during the search, a call to DFS is exe-cuted. The sleep set that has to be associated with s ispassed as argument. In line 6, a new set of transitionsis selected to be explored from s. Persistent Set() re-turns a persistent set in the current global state s that isnonempty if there exist transitions enabled in s. Lines11 and 14 describe how to compute the sleep sets as-
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Figure 4: Comparison of performances for the dining-philosophers systemsociated with the successor global states of s from thevalue of its sleep set Sleep. In line 10, a transition tis executed from s. The procedure Execute(t) returnsafter a new global state has been reached by the con-current system. Then all the transitions of Sleep thatare independent with t are passed into the sleep set as-sociated to that new global state (line 11). Once thesearch from that new state (and hence the correspond-ing call to DFS) is completed, the exploration of theother transitions selected to be explored from s mayproceed. The concurrent system is then brought backto the global state s in line 13. (This can be done byreinitializing the system and reexecuting the sequenceof transitions in Stack, for instance.) Next, transitiont, i.e., the last transition explored from s, is added toSleep in line 14.The correctness of Algorithm 2 is established by thefollowing theorem.Theorem 2 Consider a concurrent system as de�nedin Section 2, and let AG denote its state space. AssumeAG is �nite and acyclic. Then, all the deadlocks in AGare visited by Algorithm 2. Moreover, if there exists aglobal state in AG where an assertion is violated, thenthere exists a global state visited by Algorithm 2 wherethe same assertion is violated.Proof: See Appendix.In other words, deadlocks and assertion violations canbe detected using Algorithm 2. As discussed in the pre-vious section, the termination of Algorithm 2 is garan-teed only when the state space AG is �nite and doesnot contain any cycles. Obviously, in practice, Algo-rithm 2 is very useful for e�ciently exploring the state

space of any concurrent system, whether its state spaceis acyclic or not.Finally note that Algorithm 2 is di�erent from thealgorithms combining persistent sets and sleep sets thatappeared in [God96]. Indeed, with a state-less search,di�erent sleep sets associated with the same global state(corresponding to di�erent visits of that state via dif-ferent paths from s0) cannot interfere with each otherduring the search. Moreover, cycles cannot be detectedin the context of a state-less search, which makes theuse of the provisos discussed in [God96] impossible.Results of experiments with Algorithm 2 for the di-ning-philosophers example are presented in Figure 4.Thanks to the use of persistent sets and sleep sets,the run-time explosion of the state-less search is nowavoided. Moreover, they yield a signi�cant reductionin the number of transitions that need be explored. Al-though Algorithm 2 does not store any state in memory,it explores fewer transitions than Algorithm 1!5 VeriSoftWe have implemented a state-less search using persis-tent sets and sleep sets in VeriSoft, a tool for systemat-ically exploring the state space of systems composed ofseveral concurrent processes executing arbitrary C code.Every process of the concurrent system to be analyzedis mapped to a UNIX process. The execution of thesystem processes is controlled by an external process,called the scheduler. This process observes the visibleoperations performed by processes inside the system,and can suspend their execution. By resuming the exe-
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cution of (the next visible operation of) one selected sys-tem process in a global state, the scheduler can exploreone transition in the state space AG of the concurrentsystem. The scheduler also contains an implementationof a search algorithm similar to Algorithm 2. In or-der to prevent the state-less search from getting lost incycles of the state space being explored, the depth ofthe search is limited. When a deadlock or an assertionviolation is detected, the search is stopped, and a sce-nario formed by all the transitions currently stored inStack is exhibited to the user. An interactive graphicalsimulator/debugger is also available for following theexecution of the processes of the system.In addition to deadlocks and assertion violations,VeriSoft also checks for divergences and livelocks. A\divergence" occurs when a process does not attemptto execute any visible operation for more than a given(user-speci�ed) amount of time, while a \livelock" oc-curs when a process has no enabled transition duringa sequence of more than a given (user-speci�ed) num-ber of successive global states. Note that these de�-nitions of divergence and livelock di�er from the stan-dard de�nitions for these notions, which correspond toliveness properties, i.e., properties that can only beviolated by in�nite sequences of operations or transi-tions [Lam77, MP92]. In contrast, our notions of diver-gence and livelock can be violated by �nite sequencesof operations or transitions, and therefore are actuallysafety properties. Indeed, a state-less search cannot de-tect cycles, and is thus restricted to the veri�cation ofsafety properties.At the time of this writing, VeriSoft is being usedfor analyzing the correctness of several examples of im-plementations of communication protocols. As an ex-ample of application, VeriSoft successfully discoveredan error in a 2500-line concurrent C program control-ling robots operating in an unpredictable environment.More precisely, this program represents a concurrentsystem composed of six processes that communicate viashared memory and semaphores. Two of the processescontrol robots that collect objects randomly droppedon a table by a third robot, represented by a third pro-cess. The three other processes are used to simulatethe rest of the environment of the robots. Sometimes,a strange behavior of the system can be observed: thetwo robots that collect objects on the table suddentlystop moving.3 As is often the case with concurrent sys-tems, this phenomenon is extremely hard to reproduce,and seems to occur spontaneously from time to time.After exploring the state space of this system for a few3Actually, a seventh process is used to visualize on the screen theposition of all the objects and of the arms of the robots on the ta-ble; this process does not in
uence the behavior of the other systemprocesses.

minutes, VeriSoft reported a scenario composed of 29transitions (as de�ned in Section 2) that led to a diver-gence. After replaying this scenario at the C level usingthe VeriSoft simulator, it was easy to see that the prob-lem was caused by an error in a \while" loop in the Ccode for one of the processes, and to understand underwhich circumstances the execution of that process wastrapped inside the loop. The divergence in that processwould then block the other processes of the system thatwere waiting for it to proceed.6 Conclusions and Comparison withRelated WorkWe have presented a new search technique for e�cientlyexploring the state space of concurrent systems com-posed of processes described by programs written infull-
edged programming languages such as C or C++.For �nite acyclic state spaces, we showed that our algo-rithm can be used for detecting deadlocks and assertionviolations without incurring the risk of any incomplete-ness in the veri�cation results. In practice, our algo-rithm can be used for systematically and e�ciently test-ing the correctness of any concurrent system, whetherits state space is acyclic or not. This algorithm is builtupon existing state-space pruning techniques known aspartial-order methods [God96]. It extends the scope ofveri�cation by state-space exploration from modelinglanguages to programming languages.Model checking is complementary to other approa-ches to program analysis. For instance, static analy-sis techniques (e.g., [CC77, MJ81, ASU86]) automati-cally extract information about the dynamic behaviorof a sequential program by examining its text. Vari-ants of these techniques have also been proposed forthe analysis of concurrent programs written in concur-rent programming languages such as Ada (e.g., [Tay83,LC91, MR93, Cor96]). For speci�c classes of concurrentprograms, these abstraction techniques can produce a\conservative" model of the system that preserves basicinformation about the communication patterns that cantake place in the system. Analyzing such a model us-ing standard model-checking techniques can then provethe absence of certain types of errors in the system. Incontrast, our approach is based on the dynamic oberva-tion of the \actual" processes of the concurrent system.This makes possible a much closer examination of thebehaviors of the system, and the detection of subtleerrors that would be missed by the above techniques.Moreover, we do not rely on any speci�c assumptionabout the static structure of the programs used to rep-resent the behavior of processes, which can actually bewritten in any language, or even be unavailable. Inter-
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esting future work is to combine the strengths of boththe static and dynamic approaches.Another related and complementary area of researchconcerns the design of simulators and debuggers for dis-tributed and parallel programs (e.g., [CMN91]). Thesetools are used to monitor the execution of concurrentprocesses running in their actual environment. Workin this area discuss techniques for, among others, (1)instrumenting the execution of processes while mini-mizing the impact of the instrumentation on the tim-ing (scheduling) between the di�erent processes, for (2)storing a minimum amount of information for faithfullyreplaying (\roll-back") very long scenarios leading toerrors, and for (3) obtaining a consistent representa-tion of a state (\snapshot") of a distributed/concurrentsystem. Note that these problems are avoided with ourapproach since (1) all the sources of nondeterminism arefully controlled by a scheduler process, (2) the purposeof our approach is to make possible the systematic anal-ysis of short executions of a concurrent system, ratherthan analyzing very long ones (e.g., containing millionsof process transitions), and (3) our analysis is performedby examining only the global states of the concurrentsystem, which the scheduler process can easily re-create.AcknowledgmentsI wish to thank Thomas Ball, Glenn Bruns, Lalita Ja-gadeesan, David Weiss, and the anonymous referees forhelpful comments on this paper. More information con-cerning VeriSoft can be found athttp://www.bell-labs.com/people/god.References[AHU74] Alfred V. Aho, John E. Hopcroft, and Jef-frey D. Ullman. The Design and Analysisof Computer Algorithms. Addison-Wesley,1974.[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers:Principles, Techniques and Tools. Addison-Wesley, 1986.[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan,D.L. Dill, and L.J. Hwang. Symbolic modelchecking: 1020 states and beyond. In Pro-ceedings of the 5th Symposium on Logic inComputer Science, pages 428{439, Philadel-phia, June 1990.[BG96] B. Boigelot and P. Godefroid. Model check-ing in practice: An analysis of the AC-CESS.bus protocol using SPIN. In Pro-
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A Correctness ProofsTheorem 1 Consider a concurrent system as de�nedin Section 2, and let AG denote its state space. Then,all the deadlocks that are reachable after the initializa-tion of the system are global states, and are thereforein AG. Moreover, if there exists a state reachable afterthe initialization of the system where an assertion is vi-olated, then there exists a global state in AG where thesame assertion is violated.Proof: (Sketch)By de�nition, a deadlock is a state where the execu-tion of the next operation of every process in the systemis blocking. Since we assumed that only executions ofvisible operations may be blocking, all deadlocks areglobal states.Let s be a reachable state where an assertion a isviolated. Let Pi be the process containing the assertiona. We know that the next operation to be executed byPi in s is the assertion a, which is a visible operation.For every process Pj other than Pi, let oj denote thenext visible operation that process Pj will eventuallyexecute. Consider the global state s0 where, for all pro-cesses Pj , j 6= i, the next operation to be executed byPj is the visible operation oj , and the next operation ofprocess Pi is the assertion a. Clearly, the global states0 is reachable from state s. Moreover, since only in-visible operations may have been executed from s to s0,assertion a is still violated in s0. (The execution of invis-ible operations in a process may not change the value ofany variable or data structure local to another process.)Finally, since s0 is reachable from s, there exists a con-current execution of the system that reaches the globalstate s0 after the initialization of the system. Any se-quence w of process transitions such that the sequenceof visible operations in w can be observed during theconcurrent execution leading to s0 de�nes a path froms0 to s0 in the global state space AG of the system.Therefore, s0 is in AG.Let us now turn to the proof of Theorem 2. To es-tablish this result, we use the notion of Mazurkiewicz'straces [Maz86]. Traces are de�ned as equivalence classesof sequences of transitions. Given a set T and a valid de-pendency relation D � T �T as de�ned in De�nition 1,two sequences over T belong to the same trace with re-spect toD (are in the same equivalence class) if they canbe obtained from each other by successively exchangingadjacent transitions which are independent accordingto D. For instance, if t1 and t2 are two transitions ofT which are independent according to D, the sequencest1t2 and t2t1 belong to the same trace. A trace is rep-resented by one of its elements enclosed within brack-ets and, when necessary, subscripted by the alphabet Tand the dependency relation. Thus the trace containing
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both t1t2 and t2t1 could be represented by [t1t2](T ;D).A trace corresponds to a partial ordering of symbol oc-currences and contains all linearizations of this partialorder. If two independent symbols occur next to eachother in a sequence of a trace, the order of their occur-rence is irrelevant since they occur concurrently in thepartial order corresponding to that trace.We will also make use of the two following lemmasfrom [God96]. These two lemmas state basic propertiesof persistent sets.Lemma 4.2 of [God96] Let s be a state in AG, and letd be a deadlock reachable from s in AG by a nonemptysequence w of transitions. For all wi 2 [w], let ti denotethe �rst transition of wi. Let Persistent Set(s) be anonempty persistent set in s. Then, at least one of thetransitions ti is in Persistent Set(s).Lemma 6.8 of [God96] Let s be a state in AG, and letw be a nonempty sequence of transitions from s in AG.For all wi 2 [w] from s in AG, let ti denote the �rsttransition of wi. Let Persistent Set(s) be a nonemptypersistent set in s. If none of the ti are in Persis-tent Set(s), then all the transitions in Persistent Set(s)are independent with all the transitions in w.To establish the correctness of Algorithm 2, we �rstprove the following lemma. Assume that all that con-cerns sleep sets in Algorithm 2 is not implemented (orequivalently that the sleep set associated to every globalstate reached during the search is empty). We nowprove that, under this assumption, if there exists a se-quence of transitions in AG from s0 to a deadlock orto a state s where an assertion a is violated, then Al-gorithm 2 without using sleep sets will eventually visitthis deadlock or a state where the assertion a is violated,provided that AG is �nite and acyclic.Lemma 1 Consider a concurrent system as de�ned inSection 2, and let AG denote its state space. AssumeAG is �nite and acyclic. Let AR be the state space ex-plored by Algorithm 2 without using sleep sets. Let sbe a state in AR. Let d be a deadlock reachable from sin AG by a sequence w of transitions. Then, d is alsoreachable from s in AR. Moreover, if s0 is a state wherean assertion a is violated that is reachable from s in AGby a sequence w0 of transitions, then there exists a state(not necessarily s0) reachable from s in AR where theassertion a is violated.Proof:The proof proceeds by induction on the length ofw and w0. For jwj = 0 and jw0j = 0, the result isimmediate. Now, assume the theorem holds for paths(sequences of transitions) of length n � 0 and let usprove that it holds for paths of length n+ 1.

Assume a deadlock d can be reached from s by apath w of length n + 1 in AG. For all wi 2 [w], let tidenote the �rst transition of wi. Let Persistent Set(s)be the nonempty persistent set that is selected in s byAlgorithm 2, i.e., the set of transitions that are exploredfrom s in AR. By Lemma 4.2 of [God96], we know thatat least one of the transitions ti is in Persistent Set(s).Since ti is in Persistent Set(s), it is explored from states and a state from which a path of length n leads to thedeadlock d is reached in AR. This together with theinductive hypothesis proves the lemma for the deadlockcase.We now consider the case of an assertion violation.Assume that a state s0 where an assertion a is violatedcan be reached from s by a path w0 of length n + 1 inAG. Let Persistent Set(s) be the nonempty persistentset that is selected in s by Algorithm 2, i.e., the setof transitions that are explored from s in AR. For allw0i 2 [w0], let t0i denote the �rst transition of w0i. If atleast one of the transitions t0i is in Persistent Set(s), itis explored from state s and a state from which a pathof length n leads to s0 is reached in AR.Otherwise, by applying Lemma 6.8 of [God96] tos and w0, we know that all the transitions in Persis-tent Set(s) are independent with all the transitions inw0. Consequently, for all the states sj reached after exe-cuting one of the transitions in Persistent Set(s) in AR,the sequence of transition w0 is still executable from sjin AG and leads to a state s0j where the assertion a isviolated (this follows from De�nition 1). By applyingthe same reasoning to any state sj and since all the ex-ecutions of the system are �nite (since its state space is�nite and acyclic), one concludes that a transition t0i iseventually executed from a successor state sk of s suchthat all the transitions from s to sk are independentwith all the transitions in w0. After the execution of t0ifrom sk, a state sl is reached in AR from which a pathof length n in AG leads to a state where the assertion ais violated. This together with the inductive hypothesisproves the lemma for the case of an assertion violation.From Lemma 1 it is then immediate to conclude thata state-less search using only persistent sets and startedin the initial state of AG will detect all the deadlocksand assertion violations in AG. We now show that theuse of sleep sets as described in Algorithm 2 preservesthis result.Theorem 2 Consider a concurrent system as de�nedin Section 2, and let AG denote its state space. AssumeAG is �nite and acyclic. Then, all the deadlocks in AGare visited by Algorithm 2. Moreover, if there exists aglobal state in AG where an assertion is violated, thenthere exists a global state visited by Algorithm 2 where



www.manaraa.com

the same assertion is violated.Proof:Consider a deadlock d or a state s0 where an assertionis violated that is reachable from the initial global states0. Imagine that we �x the order in which transitionsselected in a given state are explored and that we �rstrun Algorithm 2 without sleep sets. Let AR be the statespace explored during this run. Assume that, for everystate s in AR, the transitions explored from s are sortedfrom left to right following the order in which there areexplored: t1 is to the left of t2 if t1 is explored beforet2. Then, we run Algorithm 2 with sleep sets while stillexploring transitions in the same order. The importantpoint is that the order used in both runs is the same, theexact order used is irrelevant. By Lemma 1, we knowthat, if d is a deadlock, d is visited by Algorithm 2without sleep sets, while if an assertion a is violatedin s0, a state s00 where the same assertion is violatedis visited by Algorithm 2 without sleep sets. We nowprove that the leftmost path in AR leading to d or to astate where the assertion a is violated is still exploredin the second run when using Algorithm 2 with sleepsets.Let p = s0 t0! s1 t1! s2 : : : sn�1 tn�1! s be this path.The only reason why it might not be fully explored (i.e.,until s is reached) by the algorithm using sleep sets isthat some transition ti of p is not taken because it isin the sleep set associated with si. This means that tihas been added to the sleep set associated with someprevious state of the path p and then passed along puntil si. Let us prove that this is impossible.Assume that ti is in the sleep set associated withstate si, denoted si:Sleep. Hence, ti has been added tothe sleep set associated with some previous state sj , j <i, of the path p and passed in the sleep set associatedwith the successor states of sj along the path p untilsi. Formally, ti 62 sj :Sleep when sj is visited along thispath and ti 2 sk:Sleep for all states sk, j < k � i. Thisimplies that ti has been explored before tj from sj sincea transition is introduced in the sleep set after it hasbeen explored (line 14 of Algorithm 2). Moreover, alltransitions that occur between tj and ti in p, i.e., all tksuch that j � k < i, are independent with respect toti. Indeed, if this was not the case, ti would not be insi:Sleep since transitions that are dependent with thetransition taken are removed from the sleep set (line 11of Algorithm 2).Consequently, titj : : : ti�1 (the sequence tj : : : ti�1tiwhere ti has been moved to the �rst position) is in[tj : : : ti�1ti]. Thus, titj : : : ti�1 and tj : : : ti�1ti are twointerleavings of a single trace, and hence lead to thesame state: sj titj :::ti�1) si+1. Since there is a pathsj titj :::ti�1) si+1 from sj , and since ti is explored before

tj in sj , the application of Lemma 1 to the state reachedafter the execution of ti from sj implies that the path pis not the leftmost path in AR leading to d or to a statewhere the assertion a is violated. A contradiction.Finally, it is worth noticing that all the above resultsalso hold when a valid conditional dependency relationis used. Moreover, in that case, the above results holdwithout requiring the valid conditional dependency re-lation to be weakly uniform [God96].


